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Alwnet- -The Stokes number defined in terms of the particle aerodynamic response time is not 
appropriate for bubble dispersion. Since the aerodynamic response time for bubbles is always very short, 
acceleration of the surrounding liquid always controls their motion. Thus, the ratio of local to 
gravitational acceleration is a better measure. The equation for relative bubble motion shows that an 
inverse Froude number, defined as the ratio of terminal bubble rise velocity to the characteristic velocity 
fluctuation, has the same interpretation for bubble dispersion as does the Stokes number for particles. This 
is demonstrated compotationally for a sparse bubble swarm rising through a Stuart vortex. 
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1. I N T R O D U C T I O N  

For gas-particle flows, Crowe et aL (1985) found that the Stokes number, St, defined as the ratio 
of the aerodynamic response time of the particle to the characteristic time of large-scale turbulence 
structures, is the controlling parameter for particle dispersion in a gas flow. Particles with St << 1 
tend to remain in dynamic equilibrium with the fluid and are strongly dispersed by turbulence. If 
St>> 1, the particles are not affected by the fluid motion and pass through with little or no 
dispersion. 

The behavior of bubbles in a liquid is fundamentally different from that of solid particles in a 
gas. Bubbles have essentially no mass compared to the surrounding liquid, but particle inertia 
dominates the surrounding gas. Therefore, bubble motion leads the fluid while particles lag and 
the relative velocity is generally positive for bubbles but negative for particles. The aerodynamic 
response time measures how soon the bubble's relative velocity becomes limited by drag rather than 
how rapidly particles accelerate to match the surrounding flow. 

Even after including the virtual mass to correct the response time, the St is not appropriate for 
bubble dispersion. The response time for even the largest bubbles is on the order of milliseconds. 
Since bubbles are always at the mercy of the fluid, a better measure of bubble dispersion should 
relate the relative strength of the accelerations that drive the bubble motion. We will show that 
the ratio of local acceleration to gravity is most appropriate. 

2. B U B B L E  D Y N A M I C S  

To study the response of bubbles to the surrounding liquid, we require an expression for the 
relative velocity. We shall assume that the phase densities are constant, the bubbles are sufficiently 
sparse that there is no interaction, and there is no mass transfer between phases. Since we are 
concerned with motions of larger scale than the bubble size, we shall also neglect or average out 
smaller scale variations or turbulent fluctuations and surface tension effects. The local instan- 
taneous momentum equation for phase k can be averaged by methods such as those used by 
Delhaye & Achard (1976), Nigmatulin (1979), Banerjee &Chan (1980), Kataoka & Serizawa (1989) 
and others to obtain, with the above assumptions, 

0 i 
~ o~k PkUk + V" ~kPkUkUk ffi V" CtkOk + ~kPkg + a ok" nk • [1] 

Here ok is the stress tensor consisting of the usual pressure and shear components, ~'k -- Vk/V is 
the phase volume fraction, g is the gravity vector, a ffi A J V i s  the interracial area per unit volume 
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and n k is the unit vector pointing out of phase k normal to the interface. The averages over a volume 
occupied by phase k and over the interfacial surface in that volume are indicated, respectively, by 

~k = XkdV and ~ k = ~  X k d A .  
vk 1 

Applying continuity to the momentum equation [1] and expanding the stress divergence, we 
obtain the following simplified expression for the acceleration of phase k: 

Ok Uk l 
Otkpk ~ = Otk V " Gk q- ffk " VOtk "4- OtkPkg q- a ak " nk , [2] 

where the material derivative following phase k is defined as 

Dk 
- + U k "  V. 

Dt dt 

The stress tensor is simplified by a decomposition similar to the method introduced by Banerjee 
& Chan (1980) for the pressure component. The total stress is split into a volume average, ak, that 
varies on time and space scales larger than the dispersed phase, and a second that superimposes 
small variations of the same scales as the dispersed phase. The latter component consists of the 
average over the surface of each bubble or particle, A#a, and the variation around this average, 
Aa~l. This three-fold decomposition of the local instantaneous stress, ak, can be expressed as 

O'k ~ ffk + A e k l  -I- Ao" kl" 

The interface average, A0a, is usually described as the pressure defect around a body moving 
through a fluid or the excess pressure on the surface of an expanding bubble (Stuhmiller 1977; 
Ruggles 1987). It can be taken as zero in the dispersed phase. Only the variation of the stress over 
the interfacial surface, AO'~l, can produce a net force on an individual bubble. But a gradient in 
the interface average stress, A0a, or in the dispersed phase volume fraction can generate a force 
in the continuous fluid. Applying this decomposition to the interfacial stress term in [2], noting that 
Ok is constant with respect to the interface averaging operation, yields 

1 1 I 

a ak" nk = 0k" afi~ + a A 0 k l -  nk + a AO'~l • n k . [3] 

The first term on the RHS of [3] cancels with the second term on the RHS of [2] by virtue of the 
limiting form of the divergence theorem with Slattery (1972), Delhaye & Achard (1976), Nigmatulin 
(1979) and others have shown to give 

1 _fAnk dA = - V~k. 
_ _  l 

Application of the divergence theorem to the second term results in 
1 

a AOkl"  n k ---- - -  WOCk Affkt .  

Prosperetti & Jones (1984) obtained the same result for pressure. But Banerjee &Chan  (1980), 
Pauchon & Banerjee (1986) and others assume the interface average varies on the same scale as 
the volume average and is therefore essentially constant, moving the stress outside the divergence 
operator. However, regardless of which result is correct, we shall assume the bubble distribution 
is sufficiently dilute and uniform to neglect this term altogether. 

The last term in [3] is the interfacial average of the surface-varying stress component. It represents 
the net force exerted on phase k by the interface. It can include life, the Basset force, viscous and 
form drag and the virtual mass effect. For bubbles, we can neglect all but the latter two forces. 
Using the subscripts c and d to indicate continuous and dispersed phases, respectively, the result 
is expressed as 

I = FDdUd DcUcl 
a Aff~ll" lid -°tdpcK'~(Ua-U~)-~aP~C~ L Dt Dt .J" [4] 
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The first term in [4] is the standard inertial form of the interphase drag force. The second term 
represents the accepted form of the virtual mass force (Drew & Lahey 1987), where C~= is the virtual 
mass coefficient. While the acceleration in [4] is not strictly objective (Pauchon & Smereka 1992), 
we shall consider the relative velocity gradients of sufficiently large scale compared to the bubbles 
that it is a good approximation in computing bubble trajectories. 

Because we have neglected the effect of interface average stress and surface tension, and because 
the stress in the bubble is a uniform pressure to all practical intents, the liquid stress gradient 
effectively represents the external stress field for both phases. Substituting [4] into [2], including the 
simplifications to the interfacial stress terms, and recognizing that the interracial force is symmetric, 
we obtain the following expressions for the acceleration for the dispersed and continuous phases, 
respectively: 

Dd Ud FDd Ud 
O~dPd ~ + adpcCvm L Dt 

and 

DcUo FDdUd 

DoU01 = 
Dt J 0tdPdg "{- 0~dV" O'c - -  0tdpcK~(Ud -- Uc) 

D=Uc 1 = 
b-~ / =opog + ~cV- ~c - 0~pc/~(Ud -- U=) 

[5] 

DdUR (1 + ~)Kdc 1 pd 
+ UR" V1Uo + Us = P= FDcU° 1 --Dt _ ( ~ )  ( ~ )  [_ Dt -g,_] [7] 

Pd+ 1+ C~m Pd+ 1+ Cm 
Pc Po 

We can eliminate the stress gradient between [5] and [6], and re-arrange the result into a single 
expression that gives the relative velocity, UR = Uo -- Uo, in terms of liquid acceleration and gravity: 

where the total derivative of UR follows the dispersed phase through the identity 

DdUd DoUo - DdUR 
- -  - - -  + Us" VUc. 

Dt Dt Dt 

Since the RHS of [7] is identically zero for neutrally buoyant particles, there is no relative motion 
unless the phases have different densities or the motion is imposed as an initial condition. The sign 
of the right side depends on the density ratio so that heavy particles must move slower and light 
ones faster than the fluid. This is why bubbles always lead and solid particles always lag the fluid 
field. The same sign change on the gravity term makes particles fall and bubbles rise. 

The third term on the LHS of [7] serves to limit the relative velocity--bubbles from moving too 
fast and particles from travelling too slow relative to the surrounding fluid. The inverse of the 
coefficient of UR in this term is the aerodynamic response time for the system. We can simplify 
this by defining the phase drag coefficient, Kdc, in terms of the discrete drag coefficient, CD, for 
a spherical body by 

3c~ 
Kd=-- ~dd IUd-- U=I. 

For nonspherical entities, the actual diameter can be replaced by the equivalent diameter, De, the 
diameter of a sphere of equal volume. Using this expression for K~ and considering only a single 
particle (~d<<=c), gives the expression 

(PO -}- Cvm)D d 
4 \p° 

tA = 3 lUg[ CD [8] 

The denominator of [8] is a constant in Stokes flow or whenever the drag coefficient has inverse 
Re dependence. Substitution of the Stokes drag law, CD = 24/Re, gives the response time for very 
small, spherical bubbles as 

poD 2 
tA = C~m 18/z c • 

[6] 
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For larger bubbles in the transition from spherical to ellipsoidal shape at higher Re Moore's 
(1962) analytically derived result, Co = 48/Re, can be used in place of Stokes law. For still larger 
Taylor cap bubbles, where the gravitational acceleration dominates, one can substitute Davies & 
Taylor's (1950) formula for the terminal rise velocity to obtain 

t A = Cvm Dk/2~, 

where Dc is the equivalent diameter. Ellipsoidal bubbles have a nearly constant terminal velocity 
except in very pure liquids (Clift et aL 1978). This implies that their response time is also 
approximately constant. Since the transition from ellipsoidal to Taylor cap occurs at an E6tv6s 
number of 40 (Bhaga & Weber 1981), the response time can be estimated with the Taylor expression 
above using an equivalent diameter corresponding to E6 = 40, i.e. 

Using these expressions we find that a 0.5 mm diameter spherical bubble in water has a response 
time of about 3 ms. The response time of a typical eUipsoidal bubble of 1 crn equivalent diameter 
is about 15 ms and that of a larger Taylor cap bubble of 5 cm equivalent diameter is only about 
25 ms. Thus, even a very large bubble has a very short response time. Bubble motion is always 
determined by external accelerations and the traditional St criterion developed by solid particles 
is not appropriate to describe bubble dispersion. 

3. DISPERSION MODEL 

In order to determine the proper measure of dispersion for bubbles, we need to investigate bubble 
behavior in the coherent flow structures of a free shear flow. To do this we shall model a plane 
mixing layer with Stuart's vortex, as Crowe et al. 0985) have done with particles. Stuart's vortex 
simulates the large-scale structures quite well, but does not model vortex pairing or spreading of 
the mixing layer. The two-dimensional vortex is defined by the two components of liquid velocity: 

AU0 sinh(y) 
Uc(x, y, t) = Uot + [9a] 

2[cosh(y) + w cos(x - U0t)] 

and 

Vc(x, y, t) = AUo w sinh(x - Uot) [9b] 
2[cosh(y) + w cos(x - U0t)] 

where U0 is the average x-velocity of the two layers and A U0 is the difference in the speeds of the 
two streams. The parameter, w, determines the vortex rotation direction and aspect ratio. The 
structure is most realistic when w = -0.25. 

We choose a reference frame that moves with the vortices so that /-7o = 0 and the high- and 
low-speed streams appear to flow in opposite directions at equal speeds. This makes AU0 twice the 
speed of one of the opposing streams. We shall choose AU0 = 2 m/s. The shape of the flow field 
in this Stuart vortex is illustrated by the paths of neutral density particles in figure 1. Bubble 
velocities are compared with a simplified form of [7]. The bubble velocity is retained instead of 
converting to relative velocity and the bubble density and volume fraction are considered 
insignificant compared to those of the liquid. This converts [7] to 

Cvm DdUd _ (1 + Cvm ) D~U~ Dt ~ - g -- Kdc (Ud -- Uc). [10] 

Bubble trajectories are computed by solving the finite-difference analog of [10] for velocity, with 
the liquid velocity field given by [9], and integrating to obtain the time-dependent bubble position. 
Bubbles are initially released from zero relative velocity in a uniformly spaced 9 x 3 grid placed 
just below the horizontal axis of the vortex sheet outlined by the rectangle in figure 1. The 
divergence of bubble trajectories starting from different locations shows the dispersion. No bubble 
interaction is considered, in accordance with the original assumptions. 
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Figure 1. Stuart vortex configuration.  
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Figure 2. Taylor  cap bubbles,  De = 50 ram. 

4. RESULTS AND DISCUSSION 

Figures 2, 3 and 4 show the dispersion of grids of Taylor cap, ellipsoidal and spherical bubbles 
(equivalent diameters of  50, 5 and 0.5 ram, with terminal rise speeds of 50, 30 and 6 m/s ) ,  
respectively, 8-10 s after release in a Stuart vortex sheet with AU0 = 2. Three sequential bubble 
positions, 0.2 s apart, are plotted to indicate velocity as well as position. It is clear that the larger 
the bubble, the faster the rise speed and the smaller the dispersion. The larger bubbles in figure 
2 maintain approximately their initial grid orientation, while the small spherical bubbles are 
well-mixed by the left-hand vortex. Recall that even the largest bubbles have a very short response 
time and tend to follow the motion of the liquid very closely. But, with gravity perpendicular to 
the vortex sheet, the bubble terminal rise speed relative to the liquid determines how strongly they 
are affected by the vortices. 

Figure 5 shows the paths of each of the three bubble sizes after release in the lower right quadrant 
of  a vortex, shown by the dotted streamines. The small, spherical bubble follows the vortex 
streamlines closely with very little rise evident. The ellipsoidal and cap bubbles, on the other hand, 
rise through the vortex with some change of course but clearly cross vortex streamlines. It is clear 
that bubbles exhibit an effect similar to that of the St for particles, but it is related to residence 
time instead of response time. That is, small bubbles that rise slowly spend more time in a turbulent 
eddy and conform more closely to its shape, while a large fast bubble passes right through. The 
ratio of residence times of the liquid to the bubble, the inverse ratio of their velocities, measures 
whether the bubble responds more to the acceleration of gravity or of the liquid. Define 

UR [11] 
Q - Auo' 
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Figure 3. Ell ipsoidal ,  D. = 5 nun. Figure 4. Spherical bubbles,  D~ = 0.5 mm. 
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Figure 5. Single particle paths through a vortex. 

where UR is the bubble's terminal rise velocity and AUc is the characteristic velocity difference of 
the turbulent structure. For our Stuart vortex, the latter would be AU0--2 m/s. Under this 
definition, a small value of Q indicates a slow rise speed and a strong response to fluctuations in 
the liquid. A relatively large Q means a strong response to gravity relative to the liquid motion 
and relatively little dispersion of the bubbles by liquid fluctuation. 

The relation of gravity to liquid velocity fluctuation is made more clear by substituting 
Davies & Taylor's (1950) expression for terminal rise velocity for UR in [11]. This makes our new 
quantity a ratio of gravity to inertia forces, which is equivalent to an inverse :turbulent Froude 
number: 

Q= gD2~A~ ~ 1 = Frr" [12] 

For the viscous range, a similar substitution for the rise velocity using CD = 48/Re, yields 

1 pcgD~ 1 FgD,-~pcAUcDel 1 Re 

Q =36AUcu-----~---3gkX-~J[_ ~ 'J=36FF" 
[13] 

The inverse Fr relation appears again, although to a power of 2. Substituting values representing 
the flows, we find that the large cap bubbles in figure 2 have Q ~ 0.25 via [12], while the small 
spherical ones in figure 4 have Q ~ 0.03 by [13]. The ellipsoidal bubbles in figure 3 have an 
intermediate Q ~ 0.15. Thus, the values of Q are consistent with the behavior illustrated in the 
figures. 

5. CONCLUSION 

Having compared the dispersion behavior of gas-liquid (bubble) flow to solid-gas (particulate) 
flow, we find that the St based on aerodynamic response time does not describe bubble dispersion, 
because the bubble response time is always extremely short regardless of bubble size. However, it 
appears from computational results that the ratio of gravitational to liquid acceleration does 
determine bubble dispersion characteristics. This same effect occurs with solid particles, but large 
particles that respond to gravity also have a very large aerodynamic response time so that the 
normal St criterion remains accurate. 

A new quantity, defined as the ratio of terminal bubble rise velocity to the characteristic liquid 
velocity fluctuation, has the same interpretation for bubble dispersion as does the St for particles. 
The new quantity turns out to be equivalent to an inverse Fr, as might be expected intuitively. 
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